
What is the difference between a Perceptron, Adaline, and 
neural network model? 

Both Adaline and the Perceptron are (single-layer) neural network models. The 
Perceptron is one of the oldest and simplest learning algorithms out there, and I would 
consider Adaline as an improvement over the Perceptron. 

What Adaline and the Perceptron have in common 

 they are classifiers for binary classification 
 both have a linear decision boundary 
 both can learn iteratively, sample by sample (the Perceptron naturally, and Adaline 

via stochastic gradient descent) 
 both use a threshold function 

 

 

Before we talk about the differences, let’s talk about the inputs first. The first step in the 
two algorithms is to compute the so-called net input z as the linear combination of our 
feature variables x and the model weights w. 

 

Then, in the Perceptron and Adaline, we define a threshold function to make a 
prediction. I.e., if z is greater than a threshold theta, we predict class 1, and 0 otherwise: 

 



 

The differences between the Perceptron and Adaline 

 the Perceptron uses the class labels to learn model coefficients 
 Adaline uses continuous predicted values (from the net input) to learn the 

model coefficients, which is more “powerful” since it tells us by “how much” we were 
right or wrong 

So, in the perceptron, as illustrated below, we simply use the predicted class labels to 
update the weights, and in Adaline, we use a continuous response: 



 

Important note: the "activation function" in Adaline just for illustrative purposes; 
here, this activation function is simply the identity function i.e. net input is used 
for weight update. 

Multi-layer neural networks 

Although you haven’t asked about multi-layer neural networks specifically, let me add a 
few sentences about one of the oldest and most popular multi-layer neural network 
architectures: the Multi-Layer Perceptron (MLP). The term “Perceptron” is a little bit 
unfortunate in this context, since it really doesn’t have much to do with Rosenblatt’s 
Perceptron algorithm. 



 

MLPs can basically be understood as a network of multiple artificial neurons over 
multiple layers. Here, the activation function is not linear (like in Adaline), but we use a 
non-linear activation function like the logistic sigmoid (the one that we use in logistic 
regression) or the hyperbolic tangent, or a piecewise-linear activation function such as 
the rectifier linear unit (ReLU). In addition, we often use a softmax function (a 
generalization of the logistic sigmoid for multi-class problems) in the output layer, and a 
threshold function to turn the predicted probabilities (by the softmax) into class labels. 

So, what the advantage of the MLP over the classic Perceptron and Adaline? 

 By connecting the artificial neurons in this network through non-linear activation 
functions, we can create complex, non-linear decision boundaries that allow us to tackle 
problems where the different classes are not linearly separable. 

Let me show you an example :) 



 

Multiple Adaptive Linear Neuron (Madaline) 

Madaline which stands for Multiple Adaptive Linear Neuron, is a network which 
consists of many Adalines in parallel. 

It will have a single output unit. Some important points about Madaline are as follows − 

 It is just like a multilayer perceptron, where Adaline will act as a hidden unit 
between the input and the Madaline layer. 

 The weights and the bias between the input and Adaline layers, as in we see in 
the Adaline architecture, are adjustable. 

 The Adaline and Madaline layers have fixed weights and bias of 1. 

 

 

 

 

 

 

 

 



Architecture 

The architecture of Madaline consists of “n” neurons of the input layer, 

 “m” neurons of the Adaline layer, and 

 1 neuron of the Madaline layer. 

 The Adaline layer can be considered as the hidden layer as it is between the input 
layer and the output layer, i.e. the Madaline layer. 

 

Training Algorithm 

By now we know that only the weights and bias between the input and the Adaline 
layer are to be adjusted, and the weights and bias between the Adaline and the 
Madaline layer are fixed. 

Step 1 − Initialize the following to start the training − 

 Weights 

 Bias 

 Learning rate αα 

For easy calculation and simplicity, weights and bias must be set equal to 0 and the 
learning rate must be set equal to 1. 

Step 2 − Continue step 3-8 when the stopping condition is not true. 

Step 3 − Continue step 4-7 for every bipolar training pair s:t. 

Step 4 − Activate each input unit as follows − 

xi=si(i=1ton)xi=si(i=1ton) 



Step 5 − Obtain the net input at each hidden layer, i.e. the Adaline layer with the 
following relation − 

Qinj=bj+∑inxiwijj=1tomQinj=bj+∑inxiwijj=1tom 

Here ‘b’ is bias and ‘n’ is the total number of input neurons. 

Step 6 − Apply the following activation function to obtain the final output at the Adaline 
and the Madaline layer − 

f(x)={1−1ifx⩾0ifx<0f(x)={1ifx⩾0−1ifx<0 

Output at the hidden (Adaline) unit 

Qj=f(Qinj)Qj=f(Qinj) 

Final output of the network 

y=f(yin)y=f(yin) 

i.e. yinj=b0+∑mj=1Qjvjyinj=b0+∑j=1mQjvj 

Step 7 − Calculate the error and adjust the weights as follows − 

Case 1 − if y ≠ t and t = 1 then, 

wij(new)=wij(old)+α(1−Qinj)xiwij(new)=wij(old)+α(1−Qinj)xi 

bj(new)=bj(old)+α(1−Qinj)bj(new)=bj(old)+α(1−Qinj) 

In this case, the weights would be updated on Qj where the net input is close to 0 
because t = 1. 

Case 2 − if y ≠ t and t = -1 then, 

wik(new)=wik(old)+α(−1−Qink)xiwik(new)=wik(old)+α(−1−Qink)xi 

bk(new)=bk(old)+α(−1−Qink)bk(new)=bk(old)+α(−1−Qink) 

In this case, the weights would be updated on Qk where the net input is positive 
because t = -1. 

Here ‘y’ is the actual output and ‘t’ is the desired/target output. 

Case 3 − if y = t then 

There would be no change in weights. 

Step 8 − Test for the stopping condition, which will happen when there is no change in 
weight or the highest weight change occurred during training is smaller than the 
specified tolerance. 



Back Propagation Neural Networks 

Back Propagation Neural (BPN) is a multilayer neural network consisting of the input 
layer, at least one hidden layer and output layer. As its name suggests, back 
propagating will take place in this network. The error which is calculated at the output 
layer, by comparing the target output and the actual output, will be propagated back 
towards the input layer. 

Architecture 

As shown in the diagram, the architecture of BPN has three interconnected layers 
having weights on them.  

The hidden layer as well as the output layer also has bias, whose weight is always 1, 
on them. 

, the working of BPN is in two phases. 

 One phase sends the signal from the input layer to the output layer, and 

 the other phase back propagates the error from the output layer to the input 
layer. 

 

 



Training Algorithm 

For training, BPN will use binary sigmoid activation function. The training of BPN will 
have the following three phases. 

 Phase 1 − Feed Forward Phase 

 Phase 2 − Back Propagation of error 

 Phase 3 − Updating of weights 

All these steps will be concluded in the algorithm as follows 

Step 1 − Initialize the following to start the training − 

 Weights 

 Learning rate αα 

For easy calculation and simplicity, take some small random values. 

Step 2 −  Continue step 3-11 when the stopping condition is not true. 

Step 3 − Continue step 4-10 for every training pair. 

Phase 1 

Step 4 − Each input unit receives input signal xi and sends it to the hidden unit for all i 
= 1 to n 

Step 5 − Calculate the net input at the hidden unit using the following relation − 

Qinj=b0j+∑i=1nxivijj=1topQinj=b0j+∑i=1nxivijj=1top 

Here b0j is the bias on hidden unit, vij is the weight on j unit of the hidden layer coming 
from i unit of the input layer. 

Now calculate the net output by applying the following activation function 

Qj=f(Qinj)Qj=f(Qinj) 

Send these output signals of the hidden layer units to the output layer units. 

Step 6 − Calculate the net input at the output layer unit using the following relation − 

yink=b0k+∑j=1pQjwjkk=1tomyink=b0k+∑j=1pQjwjkk=1tom 

Here b0k is the bias on output unit, wjk is the weight on k unit of the output layer 
coming from j unit of the hidden layer. 

Calculate the net output by applying the following activation function 

yk=f(yink)yk=f(yink) 



Phase 2 

Step 7 − Compute the error correcting term, in correspondence with the target pattern 
received at each output unit, as follows − 

δk=(tk−yk)f′(yink)δk=(tk−yk)f′(yink) 

On this basis, update the weight and bias as follows − 

Δvjk=αδkQijΔvjk=αδkQij 

Δb0k=αδkΔb0k=αδk 

Then, send δkδk back to the hidden layer. 

Step 8 − Now each hidden unit will be the sum of its delta inputs from the output units. 

δinj=∑k=1mδkwjkδinj=∑k=1mδkwjk 

Error term can be calculated as follows − 

 

 

Here’s the Python code if you want to reproduce these plots: 

from mlxtend.evaluate import plot_decision_regions 

from mlxtend.classifier import Perceptron 

from mlxtend.classifier import Adaline 

from mlxtend.classifier import MultiLayerPerceptron 

import numpy as np 

import matplotlib.pyplot as plt 

from sklearn.datasets import make_moons 

import matplotlib.gridspec as gridspec 

import itertools 

 

gs = gridspec.GridSpec(2, 2)xw 

X, y = make_moons(n_samples=100, random_state=123) 

fig = plt.figure(figsize=(10,8)) 

 



ppn = Perceptron(epochs=50, eta=0.05, random_seed=0) 

ppn.fit(X, y) 

ada = Adaline(epochs=50, eta=0.05, random_seed=0) 

ada.fit(X, y) 

 

mlp = MultiLayerPerceptron(n_output=len(np.unique(y)), 

                           n_features=X.shape[1], 

                           n_hidden=150, 

                           l2=0.0, 

                           l1=0.0, 

                           epochs=500, 

                           eta=0.01, 

                           alpha=0.0, 

                           decrease_const=0.0, 

                           minibatches=1, 

                           shuffle_init=False, 

                           shuffle_epoch=False, 

                           random_seed=0) 

 

mlp = mlp.fit(X, y) 

 

 

for clf, lab, grd in zip([ppn, ppn, mlp], 

                         ['Perceptron', 'Adaline', 'MLP (logistic sigmoid)'], 

                         itertools.product([0, 1], repeat=2)): 

 

    clf.fit(X, y) 

    ax = plt.subplot(gs[grd[0], grd[1]]) 

    fig = plot_decision_regions(X=X, y=y, clf=clf, legend=2) 



    plt.title(lab) 

 

plt.show() 

Error term can be calculated as follows − 

δj=δinjf′(Qinj)δj=δinjf′(Qinj) 

On this basis, update the weight and bias as follows − 

Δwij=αδjxiΔwij=αδjxi 

Δb0j=αδjΔb0j=αδj 

Phase 3 

Step 9 − Each output unit (ykk = 1 to m) updates the weight and bias as follows − 

vjk(new)=vjk(old)+Δvjkvjk(new)=vjk(old)+Δvjk 

b0k(new)=b0k(old)+Δb0kb0k(new)=b0k(old)+Δb0k 

Step 10 − Each output unit (zjj = 1 to p) updates the weight and bias as follows − 

wij(new)=wij(old)+Δwijwij(new)=wij(old)+Δwij 

b0j(new)=b0j(old)+Δb0jb0j(new)=b0j(old)+Δb0j 

Step 11 − Check for the stopping condition, which may be either the number of epochs 
reached or the target output matches the actual output. 

Ref: 
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